Session

Building Secure OpenVMS Applications 444

Robert Gezelter Software Consultant
35 - 20 167th Street, Suite 215
Flushing, New York 11358 — 1731
United States of America

+1 (718) 463 1079
gezelter@rlgsc.com
http://www.rlgsc.com

Friday, October 6, 2000 Compag Enterprise Symposium 2000
8:00 am — 9:15 am Los Angeles Convention Center
Room 501B-C Los Angeles, California



What Makes a Secure OpenVMS
Application?

Good fences make good neighbors
- “Mending Wall”

North of Boston, 1914
Robert Frost



Why?

Primary Reason — Control Business Risk

Risks:

— Personnel Disclosure
(SSN, Medical, Personnel)

— Business Disclosure
(Publicity, Loss of Advantage,
SEC)

— Accountability

— Corruption/Contamination



Technical Goals

Secondary Reasons - Maintain
— System Integrity
— Accountability
— Auditibility



How?

“For your protection and ours, this
envelope will be opened in the
presence of two bank staff members”

— Citibank Deposit/Payment Envelope
(1980)



Is performance an issue?

— Not generally an issue

— Carefully identify bottlenecks

— Eliminate Bottlenecks

— Security is almost NEVER the
reason for a PERFORMANCE
problem



What Makes a secure OpenVMS
Application?

OpenVMS itself is rated C2.

Running a C2-rated operating system Is
not sufficient. Applications must be
designed to not compromise the
Integrity and containment of the
C2-criteria.



Security Critical Areas

— Access Control
— Privileges

— Re-Invention

— Contamination



Access Control

Five sample areas:

e Password Management

« DECnet TASK Object

e File Protection and Applications

« Account/Access Management
(SYSUAF, RIGHTSLIST, SYLOGIN)

 Access Method Restrictions



Password Management

« Change Frequency —
Too Often is not good

 Pronounceability —
Important

« Machine Generated —
Good, If pronounceable



DECnet TASK Object

e facility used for worm
attacks

e wWorm attacks have used
GUEST and default accts

 No alternative if network
applications are to be developed
(alternatives require >= SYSPRYV)



DECnet TASK Object (cont’d)

e safe If used properly
— NO DEFAULT ACCOUNTS
— NO GUEST ACCOUNT
— INONETWORK qualifier
— NONETMBX qualifier



File Protection and Applications

 Access Control Lists and Identifiers

— Do NOT grant access to individuals

— Files may be accessed by identified
classes of users

— Individual accounts are given access
to classes of data (Rights Identifiers)

— Procedures at access
removal/de-briefing



File Protection and Applications
(cont’d)

Do NOT block attempts beyond
authorization — let the OpenVMS
Security Alarms be triggered

e Break single files into
multiple files to permit
different security levels



File Protection and Applications
(cont’d)

Examples:
» Data Files (Read/Write/No Access)
e Executable Files (Execute/No Access)
* Protected Subsystems

Good:
(IDENTIFIER=PAYROLL_CLERK,ACCESS=READ)
(IDENTIFIER=PAYROLL_ SUPERVISOR,ACCESS=READ+WRITE)
(IDENTIFIER=PAYROLL CLERK,ACCESS=EXECUTE)

Bad:
(IDENTIFIER=SMITH_J,ACCESS=READ)
(IDENTIFIER=DOE_JA,ACCESS=READ+WRITE)
(IDENTIFIER=SMITH_J,ACCESS=EXECUTE)



Account/Access Management

e SYSUAF
— Automatic Account Expiration
— NO Generic Accounts
— Automatic Logon Facility (ALF)
— Captive Flag



Account/Access Management (cont’d)

e RIGHTSLIST-
— By Application Function
— Separate from UIC (SOGW)
— Paperwork policies
Examples:
PAYROLL CLERK - Read Access

PAYROLL ENTRY - Write Access Hours-only
PAYROLL SUPERVISOR - Modify Access



Account/Access Management (cont’d)

e System Login
— Check access based upon source
— More complicated than SYSUAF
— Use Rights Identifiers as Input

 Group/Application Logins
— Enforce Group/Role Requirements
— Remember, User cannot override
— Check for safe environment



Access Method Restrictions

* Protected Subsystems
* Type of Access
e Take the alarm



Privileges

n aword: Just Say NO.

Permissible: TMPMB X
Possible: NETMBX

Never: Any Devour Class
NO SYSPRYV, CMKRNL, etc.

Reasons:
 Too Broad
e No granularity
e Subverts accountability
« Compromises system integrity



Contamination

Single Thread Application:
Generally safe and within the
OpenVMS security model.

Multi-theaded Applications:
Integrity and security outside
of the OpenVMS model,

You are on your own!



Contamination (Cont’d)

Suggestion:

Use Shareable Libraries to get the
memory advantages of common
executables without the
Contamination hazard.

(See session 460).



Re-Invention

When you re-write something, it is
a reliable bet that you will forget
about some seemingly small feature.
Unfortunately, system security
depends upon the interaction of
many small, seemingly baroque
detalls.



Re-Invention (cont’d)

Example:

If your application needs a LOGIN
authentication mechanism, use
LOGINOUT and AUTHORIZE In
concert with SYSUAF and
RIGHTSLIST to validate and login
your users. Attempting to replicate
the functionality is more likely to
lead to a security breach



Re-Invention (cont’d)

If you require some capability not In
standard LOGINOUT, consider using
the exit or use or use an image
executed through SYLOGIN.COM.



Summary:

It IS possible to build extremely robust
and secure applications under
OpenVMS; provided that you do not
compromise the integrity of the
system; instead use OpenVMS and
Its underlying capabilities to
maximal advantage and leverage
your own efforts.



Questions?

Robert Gezelter Software Consultant
35 - 20 167th Street, Suite 215
Flushing, New York 11358 — 1731
United States of America

+1 (718) 463 1079
gezelter@rlgsc.com
http://www.rlgsc.com

Session Notes & Materials:
http://www.rlgsc.com/cets/2000/index.html



