
5/7/2022

1

Revisiting Operating System Mass
Storage Presumptions Enables Higher

Performance and Efficiency
Robert Gezelter <gezelter@rlgsc.com>

IEEE LISAT Conference * 6 May 2022

NYIT, Old Westbury

Copyright 2022, Robert Gezelter

5/7/2022

2

Abstract

Operating system mass storage I/O facilities have
remained essentially unchanged since their original
conception nearly 50 years ago; an era of limited
memory capacity, processing power, and device
intelligence.

Today’s environment has far larger workloads and
more plentiful resources, allowing us to revisit past
tradeoffs.

We will examine how increased resources and
removal of imposed serialization can be leveraged to
increase performance and efficiency.

2

5/7/2022

3

Overview

• Changes in computing context
• The “knowable future”
• How modest changes in I/O Infrastructure

can improve optimization

Today’s differences:
• Vastly larger main memory
• Vastly higher degree of

multiprogramming/processing
• Deeply queued devices

3

5/7/2022

4

Before starting

• While concept was inspired by rotating mass
storage; changes benefit all storage
technology with any variable timing

• Virtual Real, e.g., physical optimization can
only be determined in the physical world

4

5/7/2022

5

Caches are not a universal answer

• “Working set”*

• More streams than available cache lines

• Simultaneous active contexts, e.g., no
quantum

• Cache entry fratricide

• Cache thrashing

5

* J. Denning (1967) “The working set model for program behavior”
Proceedings, ACM Symposium on Operating System Principles

5/7/2022

6

What enables optimization

• Hoisting [Allen, et al., 1971]

• Resequencing

• Optimization can only be done on known
requests

• Wider optimization windows; e.g., basic blocks

• Highest correlations are blocks in single files
in the same access stream

6

5/7/2022

7

A sample request: read/write 60 blocks

Starting at VBN 0, transfer 60 blocks into a
virtually contiguous buffer. The file is not
contiguous on the storage volume:

7

Segment
Starting

VBN
Starting

LBN Length
1 0 4500 5
2 5 100 10
3 15 20250 20
4 35 450 10
5 45 1000 10
6 55 10000 10

5/7/2022

8

Traditional I/O processing: Iterative

• User program issues a 60 block virtual read
into a virtually contiguous buffer

• Device driver/file system iteratively translates
the single virtual request into a sequence of
contiguous logical requests on the volume.

• Only one of these requests is active at any
given instant.

• Overlap and/or optimization not possible,
even if possible with hardware configuration.

8

5/7/2022

9

Iterative issue truncates the optimization
window

9

Epoch LBN Length
0 4500 5
1 100 10
2 20250 20
3 450 10
4 1000 10
5 10000 5

Issued one LBN range at a
time, waiting for completion
serializes all of the requests,
regardless of physical device
reality.

Serialization obscures the
“known future”.

5/7/2022

10

Sequential issuance prevents device
optimization

10

5/7/2022

11

Can issuance be improved?

• Since all of the sub-requests are mutually
independent, we can reduce the six
optimization windows/epochs to a single
epoch

• The device(s) gain visibility of the “known
future”

• Sub-requests can be processed in a device-
optimized sequence

11

5/7/2022

12

Removing unneeded serialization widens
the epoch

12

Epoch LBN Length
0 4500

100
20250

450
1000

10000

5
10
20
10
10
5

5/7/2022

13

Simultaneous issue enables optimization

13

5/7/2022

14

Simultaneous issue also applies at user
API level

• Multiple I/O operations on a file are often
known at the same time.

• OS primitives (OpenVMS QIO; *ix
readv/writev) do not express multiple buffers
with disjoint mass storage block locations

• User programs can be preempted between
successive system calls

14

5/7/2022

15

A solution: API multiple issue

• Hoisting is enabled with an API for multiple
issue

• Reduce system calls, context switches

15

Parallel
Execution

Individual
Buffer

Completion

Discontiguous
Virtual Block

Range
IBM System/360
Channel Program No Yes Yes

*ix readv/writev ? No No
Multi-issue
(as proposed here) Yes Yes Yes

5/7/2022

16

A different perspective: multiple issue

• Each sub-request of a virtual request is
independent of the other sub-requests derived
from the same virtual request: enable
translate and issue en masse.

• All requests are then within the same epoch

16

 Virtual/Logical Block
Number

 Transfer length
 Buffer Address
 Completion Status
 Completion Exit
 etc.

5/7/2022

17

Eliminating imposed serialization
enables more efficient processing
• Eliminating imposed serialization exposes the

”known future”

• For rotating devices, advantageous positioning
options are exposed

• Wider optimization windows prevent cache
fratricide

• Ensuring visibility prevents poor decisions

17

5/7/2022

18

More optimal processing sequence

18

5/7/2022

19

Summary

Eliminating unnecessary serialization of
requests and sub-requests creates wider
optimization horizons, which in turn creates
opportunities for optimization by the device(s)
involved in processing the operation.

19

5/7/2022

20

Questions?

Robert Gezelter
gezelter@rlgsc.com
http://www.rlgsc.com

20

5/7/2022

21

END

21

